Analisis Efek Tortuositas pada Heatsink Berpori terhadap Perpindahan Panas Konveksi Alami
DOI:
https://doi.org/10.36706/jrm.v23i2.439Keywords:
Heatsink, Tortuosity, Natural Convection, Computational Fluid DynamicAbstract
This research aims to analyze the effect of tortuosity porous heatsink on natural convection heat transfer. Heatsink plays a crucial role in dissipating heat from electronic components, and optimizing heatsink design is essential for effective and efficient thermal management. In this study, heatsink structures including splitP, diamond, gyroid, and pin were created using generative design methods, and the relationship between tortuosity and heatsinks thermal performance was investigated through Computational Fluid Dynamics (CFD). The results show that an increase in tortuosity leads to a significant increase in surface area and pressure drop, with values ranging from 9298.48-12711.93 mm2 and 0.08701-0.09474 Pa, respectively. Additionally, tortuosity also exhibits a strong linear correlation with the Nusselt number, with value R2=0.88. As tortuosity increases, the Nusselt number decreases significantly from 18.04-9.90. In this research, we conclude that tortuosity is an important parameter that affects heatsink performance, and the TPMS structure we developed is a promising heatsink design candidate for thermal management devices. However, a balance needs to be sought between surface area, pressure drop, overall heat transfer, and other parameters such as pore size and interconnectivity to achieve optimal heatsink performance.
Downloads
References
K. Lampio and R. Karvinen, “A new method to optimize natural convection heat sinks,” Heat Mass Transf. und Stoffuebertragung, 2018, doi: 10.1007/s00231-017-2106-4.
S. Zulk, T. Koneke, and A. Mertens, “Analytical Modeling of Plate Fin Heat Sinks for Natural Convection Cooling in Power Electronics,” 2016, doi: 10.1109/VPPC.2016.7791618.
D. Hou, X. Xin, and J. Qian, “Analysis of natural convection heat transfer from vertical and inclined plate fin heat sinks,” 2020, doi: 10.1007/978-981-32-9441-7_49.
V. Meena and A. Arora, “Three-Dimensional Numerical Simulation of Free Convection Over Parallel Fins Heat Sink,” 2023, doi: 10.1007/978-981-19-3410-0_8.
S. W. Pua, K. S. Ong, K. C. Lai, and M. S. Naghavi, “Natural and forced convection heat transfer coefficients of various finned heat sinks for miniature electronic systems,” Proc. Inst. Mech. Eng. Part A J. Power Energy, 2019, doi: 10.1177/0957650918784420.
S. Feng, M. Shi, H. Yan, S. Sun, F. Li, and T. J. Lu, “Natural convection in a cross-fin heat sink,” Appl. Therm. Eng., 2018, doi: 10.1016/j.applthermaleng.2017.12.049.
A. M. E. Arefin, “Thermal analysis of modified pin fin heat sink for natural convection,” 2016, doi: 10.1109/ICIEV.2016.7759986.
T. Qiu, D. Wen, W. Hong, and Y. Liu, “Heat transfer performance of a porous copper micro-channel heat sink,” J. Therm. Anal. Calorim., 2020, doi: 10.1007/s10973-019-08547-4.
R. Joison, V. Babu, A. Kannan, A. Muhammed, and G. Harikrishnan, “Numerical study on thermal performance of lotus type copper porous heat sink,” 2021, doi: 10.1063/5.0057947.
E. C. Silva, Á. M. Sampaio, and A. J. Pontes, “Evaluation of active heat sinks design under forced convection—effect of geometric and boundary parameters,” Materials (Basel)., 2021, doi: 10.3390/ma14082041.
K. S. Al-Athel, “A computational methodology for assessing the thermal behavior of metal foam heat sinks,” Appl. Therm. Eng., 2017, doi: 10.1016/j.applthermaleng.2016.10.014.
C. Y. Zhao, “Review on thermal transport in high porosity cellular metal foams with open cells,” Int. J. Heat Mass Transf., 2012, doi: 10.1016/j.ijheatmasstransfer.2012.03.017.
N. Baobaid, M. I. Ali, K. A. Khan, and R. K. Abu Al-Rub, “Fluid flow and heat transfer of porous TPMS architected heat sinks in free convection environment,” Case Stud. Therm. Eng., 2022, doi: 10.1016/j.csite.2022.101944.
O. Al-Ketan, M. Ali, M. Khalil, R. Rowshan, K. A. Khan, and R. K. Abu Al-Rub, “Forced Convection Computational Fluid Dynamics Analysis of Architected and Three-Dimensional Printable Heat Sinks Based on Triply Periodic Minimal Surfaces,” J. Therm. Sci. Eng. Appl., 2021, doi: 10.1115/1.4047385.
W. L. Roque and F. G. Wolf, “Computing the tortuosity of cancellous bone cavity network through fluid velocity field,” pp. 1–4, 2014.
I. El Ghandouri, A. El Maakoul, S. Saadeddine, and M. Meziane, “A comprehensive review of methods used to improve the thermal performance of heat sinks in natural convection,” Heat and Mass Transfer/Waerme- und Stoffuebertragung. 2023, doi: 10.1007/s00231-022-03298-9.
S. J. Cooper, A. Bertei, P. R. Shearing, J. A. Kilner, and N. P. Brandon, “TauFactor: An open-source application for calculating tortuosity factors from tomographic data,” SoftwareX, 2016, doi: 10.1016/j.softx.2016.09.002.
D. Kesavan, R. Senthil Kumar, and P. Marimuthu, “Heat transfer performance of air-cooled pin–fin heatsinks: a review,” Journal of Thermal Analysis and Calorimetry. 2023, doi: 10.1007/s10973-022-11691-z.
A. Bataineh, W. Batayneh, A. Al-Smadi, and B. Bataineh, “Ladder heat sink design using Adaptive Neuro- Fuzzy Inference System (ANFIS),” Jordan J. Mech. Ind. Eng., 2019.
C. H. Huang, J. J. Lu, and H. Ay, “A three-dimensional heat sink module design problem with experimental verification,” Int. J. Heat Mass Transf., 2011, doi: 10.1016/j.ijheatmasstransfer.2010.11.044.
D. K. Kim, S. J. Kim, and J. K. Bae, “Comparison of thermal performances of plate-fin and pin-fin heat sinks subject to an impinging flow,” Int. J. Heat Mass Transf., 2009, doi: 10.1016/j.ijheatmasstransfer.2009.02.041.
R. Mohan and P. Govindarajan, “Experimental and CFD analysis of heat sinks with base plate for CPU cooling,” J. Mech. Sci. Technol., vol. 25, no. 8, pp. 2003–2012, 2011, doi: 10.1007/s12206-011-0531-8.
V. A. da Silva, L. A. C. de Neves Gomes, A. L. F. de Lima e Silva, and S. M. M. de Lima e Silva, “Analysis of natural convection in heat sink using OpenFOAM and experimental tests,” Heat Mass Transf. und Stoffuebertragung, 2019, doi: 10.1007/s00231-019-02574-5.
N. Sreedhar et al., “Mass transfer analysis of ultrafiltration using spacers based on triply periodic minimal surfaces: Effects of spacer design, directionality and voidage,” J. Memb. Sci., 2018, doi: 10.1016/j.memsci.2018.05.028.
A. A. A. Jabber, M. R. Jawad, A. Abdul, and M. Humadi, “the Effect of Heat Sink Fins Length and Material on Its Performance,” no. December, 2016.
Q. Shen, D. Sun, Y. Xu, T. Jin, and X. Zhao, “Orientation effects on natural convection heat dissipation of rectangular fin heat sinks mounted on LEDs,” Int. J. Heat Mass Transf., 2014, doi: 10.1016/j.ijheatmasstransfer.2014.03.085.
J. M. Carcione, D. Gei, T. Yu, and J. Ba, “Effect of Clay and Mineralogy on Permeability,” Pure Appl. Geophys., 2019, doi: 10.1007/s00024-019-02117-3.
A. T. Prakoso et al., “The Effect of Tortuosity on Permeability of Porous Scaffold,” Biomedicines, vol. 11, no. 2, p. 427, 2023, doi: 10.3390/biomedicines11020427.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jurnal Rekayasa Mesin
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Rekayasa Mesin (JRM) memberikan akses terbuka terhadap siapapun agar informasi dan temuan pada artikel tersebut bermanfaat bagi semua orang. Semua konten artikel Jurnal ini dapat diakses dan diunduh secara gratis, tanpa dipungut biaya, sesuai dengan lisensi creative commons yang digunakan.