Analisis Manajemen Termal LiFePO4 (Lithium Iron Phosphate) dengan Pendinginan Bubble Generator dan Tanpa Bubble Generator
DOI:
https://doi.org/10.36706/jrm.v24i2.554Keywords:
Lithium battery, Bubble generator, Thermal managementAbstract
Lithium Iron Phosphate (LiFePO4) batteries are known for their long life, low self-discharge rate, and stable performance. However, LiFePO4 batteries are prone to thermal problems when operating outside the optimal temperature range of 25-40°C [12], which can threaten the performance, safety, and lifetime of the battery. Previous research has shown cooling systems to be a solution to these thermal issues. However, the use of an internal cooling system risks changing the voltage and causing the battery to overheat. Therefore, an approach using an external cooling system is recommended to maintain the performance of Li-ion batteries without changing their internal components. In an effort to improve the thermal management of LiFePO4 batteries, this study proposes to analyze the use of cooling with bubble generator and without bubble generator. The bubble generator here is intended to increase the random movement of water in the cooling system so that heat absorption becomes more optimal. This study uses a circulating cooling system with water pump media, airator, bubble generator and cooling using water, for the flow container that circulates in the battery cells we use acrilyc mica. The results of the influence of variations in bubble generator testing average temperature values on LiFePO4 batteries of 16.26ºC to 23.94ºC. and the influence of variations in testing without bubble generators average temperature values on LiFePO4 batteries of 17.62ºC to 25.57ºC, From this study it can be concluded that the bubble generator is able to cool 90% of the operational temperature 25-40 °C.
Downloads
References
Ardhyanti, N., Tranggono, A., Salim, A., & Nur, R. A. Analisis Sistem Pendingin Baterai Li-Ion Berbentuk Silindris menggunakan Metode Computational Fluid Dynamics ( CFD ). 7(2), 140–151. 2023.
Brennen, Christopher E. Cavitation and Bubble Dynamis - Oxford University Press. 1995.
Cengel, Y. Heat Transfer: APractical Approach 2nd Edition. New York: McGraw-Hill. 2004.
Doran M. Pauline. Heat Transfer, Heat Transfer Mechanism. In Pauline M. 2013.
Giancoli,D. C. Fisika Jilid II. Jakarta: Erlangga. 2001.
Gillmor, C. S. Joseph Fourier, 1768-1830. 1973.
Huang, Q., Li, X., Zhang, G., Zhang, J., He, F., & Li, Y. Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system. Applied Thermal Engineering, 141, 1092–1100. https://doi.org/10.1016/j.applthermaleng.2018.06.048. 2018.
Holman. Perpindahan Kalor. Jakarta: Erlangga. 1995.
I Nyoman & I Made Parsa. Motor-Motor Listrik. CV Rasi Terbit: Kupang. 2018.
Kurzweil, P. Secondary Batteries-Lithium. 1972.
L. Merinda, “Analisis Manajemen Termal Pada Sistem Pendingin Sel Baterai Li-Ion Bentuk Prismatik Dengan Variasi Laju Aliran Massa Dan Lebar Channel Menggunakan Metode Computational Fluid Dynamics (CFD),” 2017, [Daring]. Tersedia pada: https://repository.its.ac.id/47164/1/2413100046-Undergraduate_Thesis.pd
Linden, D., & Reddy, T. B. Handbook Of Batteries. 2002.
M Doran, P. Therapeutically important proteins from in vitro plant tissue culture systems. Current Medicinal Chemistry, 20(8), 1047-1055. 2013.
Otong, M. Perancangan Modular Baterai Lithium Ion (Li-Ion) untuk Beban Lampu LED. Setrum : Sistem Kendali-Tenaga-Elektronika-Telekomunikasi-Komputer, 8(2), 260. https://doi.org/10.36055/setrum.v8i2.6808. 2019.
Putra, N., Ariantara, B., & Pamungkas, R. A. Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application. Applied Thermal Engineering, 99, 784–789. https://doi.org/10.1016/j.applthermaleng.2016.01.123. 2016.
Sari, E. N., Fiveriati, A., Rusti, N., Rulianto, J., Bhiqman Susanto, R., & Catrawedarma, I. G. N. B. Visual and Pressure Signal Investigations on Bubble Produced by Ejector Bubble Generator. E3S Web of Conferences, 483, 03020. https://doi.org/10.1051/e3sconf/202448303020. 2024.
Sudibyo, I. S., K, B. F. T., & Utomo, M. S. K. T. S. Analisis Manajemen Termal Cylindrical Battery Pack Li-Ion 18650 Secara Konveksi Paksa Dengan Variasi Temperatur Inlet dan Laju Aliran Udara Menggunakan Computional Fluid Dynamics ( CFD ). 11(1), 142–149. 2023.
Vazri Muharom, & Rifky. Pengaruh Sifat Konduktivitas Termal Material Isolator (Kayu, Karet Dan Styrofoam) Terhadap Perpindahan Panas Dan Daya Keluaran Sistem Generator Thermoelectric. METALIK : Jurnal Manufaktur, Energi, Material Teknik, 1(1), 8–15. https://doi.org/10.22236/metalik.v1i1.8464. 2022.
Warner, J. Battery Pack Design. 2015.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Rekayasa Mesin
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Rekayasa Mesin (JRM) memberikan akses terbuka terhadap siapapun agar informasi dan temuan pada artikel tersebut bermanfaat bagi semua orang. Semua konten artikel Jurnal ini dapat diakses dan diunduh secara gratis, tanpa dipungut biaya, sesuai dengan lisensi creative commons yang digunakan.