Analisis Kekasaran Permukaan Hasil Proses Side Milling Menggunakan Artificial Neural Networks (ANN)
DOI:
https://doi.org/10.36706/jrm.v20i2.63Keywords:
Side Milling,, Surface Roughness, Artificial Neural Networks (ANN)Abstract
Surface roughness is one of the aberrations caused by cutting conditions in the machining process. In this test, the application of cutting fluid was carried out using the MQL (minimum quantity
lubricant) method with the AISI 1045 workpiece. Experimental testing was carried out based on the
Central Composite Design with a level point adjusted to the conditions of the vertical freis machine used, with variable cutting speed (Vc), motion feed (fz) and depth of cut (a). Surface roughness prediction is done using Artificial Neural Networks method. The requirements set in ANN are a network structure with 3 inputs, n hidden layers and 1 output, feed forward back propagation network algorithms, training and learning functions with Levenberg-Marquardt and performance calculated by MSE. The results show that the effect of cutting speed on roughness is inversely proportional, the higher the cutting speed will produce a smooth roughness value and vice versa, while the effect of feeding motion and feeding depth on roughness is directly proportional, the higher the value of feeding motion and the depth of feeding, the higher the roughness value. the more rough it gets. Surface roughness prediction resulted in the lowest MSE in the 3-8-1 structural network with MSE 0.001648738 with an error prediction of 3.2415% in all training data and testing data. And the test data get a deviation value range of 0.99% to 15.199%.
Downloads
References
A. W. Widiantoro, M. Khumaedi, and W. Sumbodo, “Pengaruh Jenis Material Pahat Potong Dan Arah Pemakanan Terhadap Kekasaran Permukaan Baja Ems 45 Pada Proses Cnc,” Pendidik. Tek. mesin unversitas semarang, 2017.
K. Kumar Gajrani and M. Ravi Sankar, “Past and Current Status of Eco-Friendly Vegetable Oil Based Metal Cutting Fluids,” Mater. Today Proc., vol. 4, pp. 3768–3795, 2017, doi: 10.1016/j.matpr.2017.02.275.
T. Rochim, Proses Pemesinan Buku 1 Klarifikasi Proses, Gaya dan Daya Pemesinan. ITB, 2007.
V. T. Widyaningrum, “Artificial Neural Network Backpropagation Dengan Momentum Untuk Prediksi Surface Roughness Pada CNC Milling,” Pros. Conf. Smart-Green Technol. Electr. Inf. Syst., vol. C, no. 008, pp. 153–158, 2013.
K. S. Sangwan, S. Saxena, and G. Kant, “Optimization of machining parameters to minimize surface roughness using integrated ANN-GA approach,” Procedia CIRP, vol. 29, pp. 305–310, 2015, doi: 10.1016/j.procir.2015.02.002.
M. Mia and N. R. Dhar, “Prediction of surface roughness in hard turning under high pressure coolant using Artificial Neural Network,” Meas. J. Int. Meas. Confed., vol. 92, pp. 464–474, 2016, doi: 10.1016/j.measurement.2016.06.048.
Mohammad Hossain, L. S. P. Gopisetti, and M. S. Miah, “Artificial neural network modlling to predict international roughness index of rigid pavement,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2018.
M. Yanis, A. S. Mohruni, S. Sharif, I. Yani, A. Arifin, and B. Khona’Ah, “Application of RSM and ANN in Predicting Surface Roughness for Side Milling Process under Environmentally Friendly Cutting Fluid,” J. Phys. Conf. Ser., vol. 1198, no. 4, 2019, doi: 10.1088/1742-6596/1198/4/042016.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Jurnal Rekayasa Mesin
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Rekayasa Mesin (JRM) memberikan akses terbuka terhadap siapapun agar informasi dan temuan pada artikel tersebut bermanfaat bagi semua orang. Semua konten artikel Jurnal ini dapat diakses dan diunduh secara gratis, tanpa dipungut biaya, sesuai dengan lisensi creative commons yang digunakan.